The Log-Shift Penalty for Adaptive Estimation of Multiple Gaussian Graphical Models

نویسندگان

  • Yuancheng Zhu
  • Rina Foygel Barber
چکیده

Sparse Gaussian graphical models characterize sparse dependence relationships between random variables in a network. To estimate multiple related Gaussian graphical models on the same set of variables, we formulate a hierarchical model, which leads to an optimization problem with a nonconvex log-shift penalty function. We show that under mild conditions the optimization problem is convex despite the inclusion of a nonconvex penalty, and derive an efficient optimization algorithm. Experiments on both synthetic and real data show that the proposed method is able to achieve good selection and estimation performance simultaneously, because the nonconvexity of the log-shift penalty allows for weak signals to be thresholded to zero without excessive shrinkage on the strong signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Precision Matrix Estimation in High Dimensional Gaussian Graphical Models with Faster Rates

We present a new estimator for precision matrix in high dimensional Gaussian graphical models. At the core of the proposed estimator is a collection of node-wise linear regression with nonconvex penalty. In contrast to existing estimators for Gaussian graphical models with O(s √ log d/n) estimation error bound in terms of spectral norm, where s is the maximum degree of a graph, the proposed est...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Joint Structural Estimation of Multiple Graphical Models

Gaussian graphical models capture dependence relationships between random variables through the pattern of nonzero elements in the corresponding inverse covariance matrices. To date, there has been a large body of literature on both computational methods and analytical results on the estimation of a single graphical model. However, in many application domains, one has to estimate several relate...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015